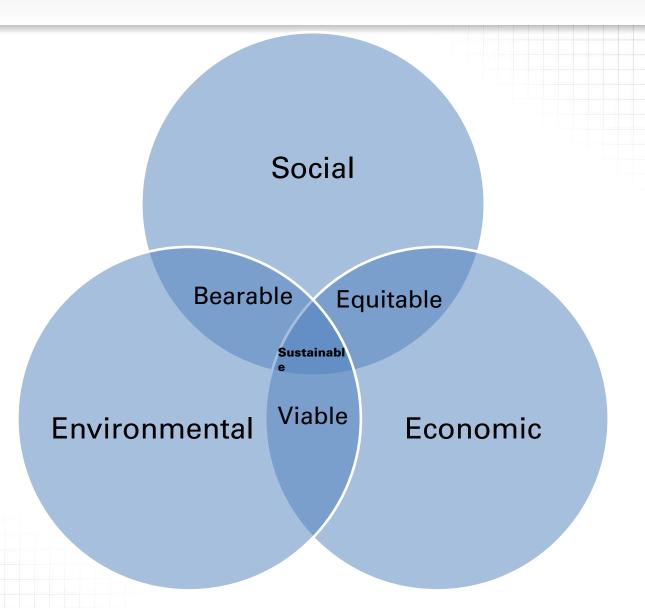


PROJECT MANAGEMENT CENTER FOR EXCELLENCE

A.J. CLARK SCHOOL OF ENGINEERING Civil & Environmental Engineering Department


SUSTAINABLE IMPLEMENTATION OF NEW TECHNOLOGIES:

Alexander Mark Ehms 2016 Project Management Symposium

WHAT IS SUSTAINABILITY?

Definition

- Sustain
 - to provide what is needed for (something or someone) to exist, continue, etc.
- United States Environmental Protection Agency
 - To create and maintain conditions in which both humans and nature can exist harmoniously
- Corporate sustainability
 - 3BL
 - social, environmental and financial.

WHY IS IT HARD TO ACHIEVE?

Sustainability is valued subjectively

VERSUS

ASSIMILATE THE VALUE OF SUSTAINABILITY?

SV represented in USD future value

- Over the course of 50 years, a single tree can generate
 - \$31,250 of oxygen
 - provide \$62,000 worth of air pollution control
 - recycle \$37,500 worth of water

SV represented in USD Present Value

- Trees can reduce energy bills by up to 40 percent.
- Residential Homes landscaped with trees are worth 4-15 percent more than homes without

MANAGING FOR SUSTAINABILITY

Law of unintended consequences

- Unforeseen Outcome
 - Unexpected benefit
 - Giving Blood
 - The American Journal of Epidemiology found blood donors are 88% less likely to suffer from a heart attack.
 - Unexpected drawback
 - Prohibition in the 1920s
 - Increase in large-scale organized crime
 - Perverse result
 - Passenger-side airbags
 - increase in child fatalities in the mid-1990s

Law of unintended consequences

- Cause of unforeseen outcomes
 - The world is inherently complex
 - Human recklessness
 - The cobra effect
 - attempted solution makes the problem worse
 - Corruption, perverse incentive
 - The butterfly effect

Law of unintended consequences

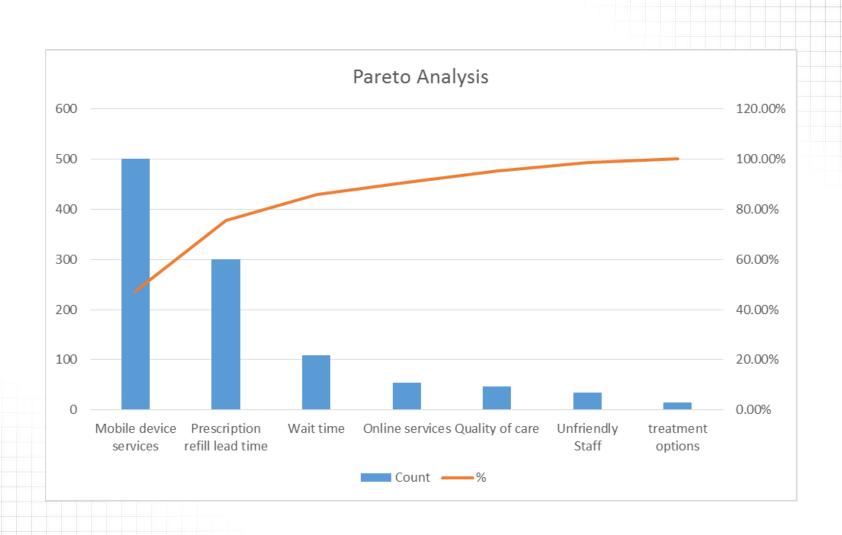
- Unforeseen outcome = Risk
 - the possibility that something unpleasant or unwelcome will happen
- Risk management:
 - mitigate the effects of human recklessness
 - anticipate world complexities
 - avoid unexpected drawbacks
 - CFCs used as refrigerants, and propellants in aerosol applications
 - Drawback ozone depletion

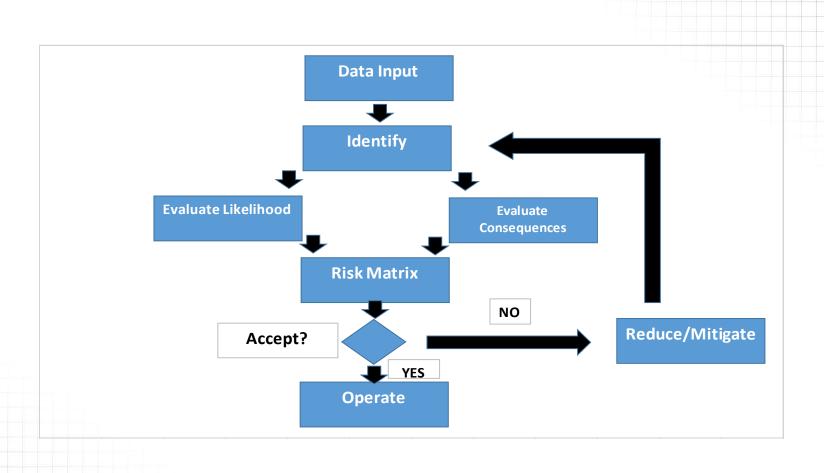
PROJECT RISK MANAGEMENT

Risk

- Can happen during a project, and after project close
- First time quality mitigates the costs of continuous control/improvement
- Project/Corporate/Supply Chain transparency is critical for optimal solutions

Six Process Groups


- Planning risk management
- Risk identification
- Performing qualitative risk analysis
- Performing quantitative risk analysis
- Planning risk responses
- Monitoring and controlling risks


Risk Matrix

		Impact				
		Very Low	Low	Medium	High	Very High
Likelihood	Very High	5	10	15	20	25
	High	4	8	12	16	20
	Medium	3	6	9	12	15
	Low	2	4	6	8	10
	Very Low	1	2	3	4	5

80-20 Rule

HTTP://PMSYMPOSIUM.UMD.EDU/

QUALITY MANAGEMENT

Quality in Healthcare Tech.

- Malcolm Baldrige National Quality Award (MBNQA)
 - Past 10 years, increasing number of applicants & recipients among nonprofits, schools, and hospitals
- Third Working Draft of ISO/IEC 42030
 - Systems and Software Engineering Architecture Evaluation
 - Focus on sustainability in software engineering

Six Sigma as Quality Metric

- A measure of variation
 - Sigma represents standard deviation
 - A measure of variability
- Reduction in variability/defects = reduction in waste

Six Sigma as a metric for Yield								
Yield	DPM	COQ	Sigma					
99.99%	3.4	<10%	6					
99.97%	233	10-15%	5					
99.40%	6210	15-20%	4					
93%	66807	20-30%	3					
65%	308537	30-40%	2					
50%	500000	>40%	1					

Lean Waste / New Technology

- Defects: Does the solution match the need?
- Overproduction: Would the solution be under utilized?
- Waiting: Does the solution rely on supplements?
- Non-Utilized Talent: Current tech capabilities?
- Transportation: redundancies across supply chain?
- Inventory: software/database scaling?
- Motion: Is the solution accessible without changing current processes?
- Extra Processing: redundancy in the process?

SUSTAINABLE TECH CRITERIA

Criteria for technology implementation

- HIPPA & FDA regulations
 - Federal/State policy
- Cybersecurity
 - Malware, malicious cyber attacks
- Adaptability
 - Useful life of the technology to be implemented
- Market & Economic volatility
- Cost effectiveness / EVA / SROI

Criteria for technology implementation

- Does this provide a needed service to the community, patients, caregivers, doctors, etc.?
 - ROI, does the benefit outweigh the initial cost and ongoing total cost of ownership?
- Sustainable sourcing practices?
 - GPOs (group purchasing organization) and their OEMs (original equipment manufacture) maintain sustainable operations? 1st 2nd tier suppliers.

CONCLUSIONS

Conclusions

- Sustainable projects, processes, and operations are critical to the continued success of a Supply chain network and SC players
- In order to mitigate the negative effects from unintended consequences, sustainability should be managed as a risk
 - KPIs include focus on quality and lean waste reduction
- Criteria effecting the health care industry include elements that are social, environmental, and financial (3BL)
- Further Research would be necessary to critique these claims

QUESTIONS