

PROJECT MANAGEMENT CENTER FOR EXCELLENCE

A.J. CLARK SCHOOL OF ENGINEERING Civil & Environmental Engineering Department

PROFIT MAXIMIZATION AND STRATEGIC MANAGEMENT FOR CONSTRUCTION PROJECTS

Hakob Avetisyan Ph.D. Miroslaw Skibniewski Ph.D.

2017 Project Management Symposium

Overview

- Resource Allocation Business as Usual
- Strategic and Business Attitude
- Modelling for Success
 - Mathematical Formulation of the Tool
 - Case Study and Results
- Questions?

Resource Allocation Business as Usual

WHAT IS IT AND WHY IS IT NO LONGER ACCEPTABLE?

Resource Allocation Business as Usual

- Traditionally projects are scheduled with an assumption that resources are limitless and available
- The main reason was the complexity of analysis and the trouble associated with losing the critical path

Strategic and Business Attitude

HOW TO MAKE IT BETTER?

Competition

- Competition acts as a driving force in the industry and companies try to become more cost effective and profitable
- Competition also makes the margin of potential profit smaller and smaller.

Managing and Competing for Projects

- When companies have more than one project resource allocation may become more challenging.
- When combined with the requirements from stakeholders and financial limitations the decisionmaking becomes more challenging.

Schematic Representation

Strategic and Business Management

CPM and
Resource
Allocation for
Site 1

CPM and Resource Allocation for Site 2 CPM and
Resource
Allocation for
Site k

Exchange of information among construction sites

Modelling for Success

WHAT IS IMPORTANT AND HOW TO DO IT?

Mathematical Formulation of the Tool

- With Management Science applications along with carefully designed constraints informed decision-making becomes easier
- The key of success is to identify the limitations that actually make a difference in decision-making and formulate those as constraints

Mathematical Model

 First lets discuss unlimited resource availability case

Next the limited availability will be discussed

Notation

		=	set of origin where activity starts					
	J	=	set of destination where activity finishes, J* is the last element in the set					
	TD	=	total duration right hand sight value where necessary					
	R_k	=	construction resource types right hand sight value where necessary (e.g. material, labor, budget, time, stakeholder needs, sustainability, etc.) $k \in K$					
R_{ijk} = usage of resource type k for activity ij i \in I, j \in J, k \in K								
	CC_{ij} = cost of crashing activity ij i \in I, j \in J							
	L_{ij}	right hand side value as limitation on crashing activity ij $i \in I$, $j \in J$						
	La_{ij}	=	estimate of the activity's crashing duration under the most favorable conditions					
	Lb_{ij}	=	estimate of the activity's crashing duration under the least favorable conditions					
	Lm_{ij}	=	most likely value for the activity's crashing duration					
ta_{ij} = estimate of the activity's duration under the most favorable								
	tb_{ij}	=	estimate of the activity's duration under the least favorable conditions					
	tm_{ij}	=	most likely value for the activity's duration					
T								

Notation

Decision variables

x_i and x_j	=	start and finish times of activity ij, i∈I, j∈J
CT_{ij}	=	crashing duration of activity ij, $i \in I$, $j \in J$ where applied
Z	=	objective function value

Civil & Environmental Engineering Department

nttp://pmsymposium.umd.edu/pm2017/

Mathematical Model

Objective function:

$$\min Z = x_{I^*} - x_1$$

(1)

(3)

Subject to:

$$x_j \ge x_i + t_{ij} \quad \forall i \in I, j \in J \tag{2}$$

$$x_i$$
 and x_i URS $\forall i \in I, j \in J$

http://pmsymposium.umd.edu/pm2017/

Mathematical Model - limits

Objective function:

$$\min Z = \sum_{i=0}^{J^*} CC_{ij} * CT_{ij}$$

(4)

• Subject to:

$$CT_{ij} \leq L_{ij} \qquad \forall i \in I, j \in J \qquad (5)$$

$$x_{j} \geq x_{i} + t_{ij} - CT_{ij} \qquad \forall i \in I, j \in J \qquad (6)$$

$$x_{J*} - x_{1} \leq TD \qquad \forall i \in I, j \in J \qquad (7)$$

$$CT_{ij} \geq 0 \qquad \forall i \in I, j \in J \qquad (8)$$

$$x_{i} \text{ and } x_{i} \text{ URS} \qquad \forall i \in I, j \in J \qquad (9)$$

Civil & Environmental Engineering Department

http://pmsymposium.umd.edu/pm2017/

Mathematical Model - combined

Objective function:

$$\min Z = x_{I*} + \sum_{i=0}^{J*} CC_{ij} * CT_{ij} - x_1$$
 (10)

Subject to:

$$CT_{ij} \leq \frac{(La_{ij}+4Lm_{ij}+Lb_{ij})}{6} \qquad \forall i \in I, j \in J \qquad (11)$$

$$x_{j} \geq x_{i} + \frac{(ta_{ij}+4tm_{ij}+tb_{ij})}{6} - CT_{ij} \qquad \forall i \in I, j \in J \qquad (12)$$

$$x_{J*} - x_{1} \leq TD \qquad \forall i \in I, j \in J \qquad (13)$$

$$CT_{ij} \geq 0 \qquad \forall i \in I, j \in J \qquad (14)$$

$$x_{i} \text{ and } x_{j} \text{ URS} \qquad \forall i \in I, j \in J \qquad (15)$$

http://pmsymposium.umd.edu/pm2017/

PROJECT MANAGEMENT CENTER FOR EXCELLENCE

A.J. CLARK SCHOOL OF ENGINEERING Civil & Environmental Engineering Department

Mathematical Model - SMCP

Objective function of SMCP:

$$\min Z = x_{J*} + \sum_{i=0}^{J*} CC_{ij} * CT_{ij} + \sum_{i=0}^{J*} \dots \dots - x_1$$
 (16)

Subject to:

$$CT_{ij} \leq \frac{(La_{ij} + 4Lm_{ij} + Lb_{ij})}{6} \qquad \forall i \in I, j \in J \qquad (17)$$

$$x_{j} \geq x_{i} + \frac{(ta_{ij} + 4tm_{ij} + tb_{ij})}{6} - CT_{ij} \quad \forall i \in I, j \in J \qquad (18)$$

$$x_{J*} - x_{1} \leq TD \qquad \forall i \in I, j \in J \qquad (19)$$

$$\dots \dots R_{ijk} \dots \dots \leq \dots R_{k} \dots \qquad \forall i \in I, j \in J \qquad (20')$$

$$CT_{ij} \geq 0 \qquad \forall i \in I, j \in J \qquad (21)$$

$$TPD = (x_{J*} - x_{1}) \qquad (22)$$

$$TPCC = \sum_{0}^{J*} CC_{ij} * CT_{ij} \qquad \forall i \in I, j \in J \qquad (23)$$

$$x_{i} \text{ and } x_{i} \text{ URS} \qquad \forall i \in I, j \in J \qquad (24)$$

Civil & Environmental Engineering Department

Avetisyan & Skibniewski UMD Project Management Symposium May 4-5, 2017 Slide 18

Activity	Predecessors	Duration in Days
A	None	6
В	None	9
C	A and B	8
D	A and B	7
E	D	10
F	C and E	12

Activity	Crashing Cost Per Day (\$)	Limit on Crashing Duration (Days)
A	10	5
В	20	5
C	3	5
D	30	5
E	40	5
F	50	5

Activity	Predec	Duration in Days			
Activity	essors	ta	tb	tm	
A	None	5	13	9	
В	None	2	10	6	
С	A and B	3	13	8	
D	A and B	1	13	7	
E	D	8	12	10	
F	C and E	9	15	12	

LP OPTIMUM FOUND AT STEP 11							
OBJECTIVE FUNCTION VALUE IS 415							
		REDUCED			REDUCED		
VARIABLE	VALUE	COST	VARIABLE	VALUE	COST		
X 6	25	0	F	0	10		
X1	0	0	X3	4	0		
A	2	0	X2	4	0		
В	5	0	X5	13	0		
C	0	3	X4	6	0		
D	5	0	TPD	25	0		
E	3	0	TPCC	390	0		

- Objective function value of SMCP as discussed above is not intuitive
- Values for Total Project Duration (TPD) and Total Project Crashing Cost (TPCC) (shaded cells) are reported as 25 days consistent with the constraint for duration limitation
- \$390 as crashing cost

	SLACK OR	DUAL		SLACK OR	DUAL
ROW	SURPLUS	PRICES	ROW	SURPLUS	PRICES
2)	3	0.00000	10)	6	0.00000
3)	0	10.00000	11)	0	-6.66667
4)	5	0.00000	12)	0	-6.66667
5)	0	10.00000	13)	0	-6.66667
6)	2	0.00000	14)	0	-30.00000
7)	5	0.00000	15)	0	39.00000
8)	0	-1.66667	16)	0	0.00000
9)	0	-5.00000	17)	0	0.00000

Contact: havetisyan@fullerton.edu

QUESTIONS?