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UNCERTAINTY CHARACTERIZATION IN QUANTITATIVE MODELS 

Adiel N-A. Komey1 Gregory B. Baecher2 and Robert C. Patev3 

ABSTRACT 

The treatment of uncertainty quantification has evolved over the years. One of the main 
drivers of this sweeping paradigm shift has been the advances in computing power. Today, 
with the exponential advances in computing power relative to the past, we can collect an 
unprecedented amount of data over an almost unlimited period of time. Big Data, as folks in 
the statistical analytics field like to call it, has expanded past the barriers of previous limita-
tions of data analytics. But there’s a problem; our over-reliance on computer analytics and 
our insatiable appetite to ‘play with the numbers’ means more often than not, we cannot 
spot mistakes within our computer models and blindly follow what the numbers say. As 
powerful as computers are, and as advanced as analytics platforms have become, quantita-
tive models perform optimally when guided by expert intuition. These computer based 
models grapple not only with physical variabilities in the real system they emulate, but also 
with potential deficiencies within the model itself due to a lack of knowledge about the sys-
tem being modeled or its surrounding environment. Today, every industry seeking a com-
petitive edge is using data to shape its decision making under uncertainty in one way or the 
other. This paper, following recent advances in uncertainty quantification in the leading do-
mains of engineering, statistics and climate change, presents the current state of the prac-
tice within these domains. The paper also presents a synthesis of recent research. 

 

 

 

 

 

 

                                                         
1 Doctoral Candidate, Department of Civil and Environmental Engineering, University of Maryland, 
College Park, MD 20742. Email: adielkomey@gmail.com 
2 Glenn L. Martin Institute Professor of Engineering, Department of Civil and Environmental Engi-
neering, University of Maryland, College Park, MD 20742. Email: gbaecher@umd.edu  
3 National Risk Advisor, Risk Management Center, Institute for Water Resources, US Army Corps of 
Engineer, Concord, MA 01742. Email: robert.c.patev@usace.army.mil 
 

mailto:adielkomey@gmail.com
mailto:gbaecher@umd.edu
mailto:robert.c.patev@usace.army.mil


Uncertainty Characterization in Quantitative Models 
May 2017 

2 of 17 

1. BACKGROUND 

Model uncertainties reflect the inability of a model or design technique to represent a sys-
tem's true physical behavior precisely, or the analyst’s inability to identify the best model, 
or a model that may be changing in time in poorly known ways (e.g., a flood-frequency 
curve changing because of changing watershed conditions). The models used to approxi-
mate naturally varying phenomena need to be fit to natural processes by observing how 
those processes work, by measuring important features, and by statistically estimating pa-
rameters of the models within the broad state of knowledge that we have about the pro-
cesses. In the modeling literature this is sometimes referred to as uncertainty quantifica-
tion. 

2. NATURE OF UNCERTAINTY  

The character and importance of uncertainty in dam safety risk analysis drives how risk as-
sessments are used in practice. The current interpretation of uncertainty is that, in addition 
to the aleatory risk which arise from presumed uncertainty in the world, it comprises the 
epistemic aspects of irresolution in a model or forecast, specifically model and parameter 
uncertainty (Figure 1). This is true in part but it is not all there is to uncertainty in risk 
analysis. The physics of hazards and of failure may be poorly understood, which goes be-
yond uncertainty in its conventional sense. All of these facets are part of the uncertainty in 
risk analysis with which we must deal. From a practical view, one might distinguish three 
types of uncertainty in risk analyses: variation in nature (aleatory uncertainty), knowledge 
limitations (epistemic uncertainty), and unknowns (deep uncertainty). 

 

Figure 1. Sources of uncertainty (Baecher and Christian, 2000). 

2.1. Aleatory uncertainty: Variation in nature 

Since antiquity, people have thought of nature and the vagaries of life as uncertain. The 
world itself is driven by fortune and luck. In modern practice, we treat rainfall, earth-
quakes, hurricanes, and many other natural hazards as innately random. Their randomness 
is part of the natural world, irrespective of people and what people know. Were there no 
people, these natural processes would still go on, and the frequencies with which they oc-
cur would be unchanged. The hydrology literature has traditionally adopted this point of 
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view. These uncertainties are said to be aleatory meaning innately random. In some fields, 
such as climate change modeling, they are referred to as ontological uncertainties. 

Aleatory uncertainties are most often natural frequencies in time or space. They are pre-
dictable up to a probabilistic description, and their uncertainty can never be reduced below 
their naturally occurring frequencies, irrespective of how much we may know about them 
or how many data we may observe. 

In applying probability measures to such uncertainties, the meaning of term probability is 
usually taken to be the frequency of occurrence in a long or infinite series of similar trials. 
In this sense, probability is interpreted for operational matters to be a property of the sys-
tem (i.e., a property of nature) independent of anyone’s knowledge of it or evidence for it. 
We may or may not know what the value of this probability is, but the probability in ques-
tion is a property for us to learn. It is innate; there is a “true” value of this probability. Two 
observers, given the same evidence, and enough of it, should eventually converge to the 
same numerical value. 

2.2. Epistemic uncertainty: Limitations in knowledge 

Sometime in the 1970’s it became increasingly obvious that not only were aleatory uncer-
tainties important, but parameter and model uncertainty were, too. These latter uncertain-
ties had nothing to do with natural variations in time and space, but with information: how 
complete were the data upon which the model characterizations were based. These were 
not uncertainties in the world but uncertainties in the mind. They had to do with how much 
one knew, and they could be reduced essentially to zero by collecting ever greater numbers 
of data. 

The recognition of parameter and model uncertainty as distinct from randomness is im-
portant in modern risk analysis. To simplify the task of risk assessment, one makes as-
sumptions about how to grapple with uncertainties. By far the most important of these as-
sumptions is separating uncertainty between aleatory and epistemic, between natural vari-
ations over space and time and lack of knowledge in the mind of the analyst or in the 
broader informed technical community (Table 1). 

Table 1. Alternate terms describing the dual meaning of uncertainty. 
 

ALEATORY UNCERTAINTY EPISTEMIC UNCERTAINTY CITATION 
Natural variability Knowledge uncertainty (NRC, 2000) 
Random or stochastic variation Functional uncertainty (Stedinger et al., 1996) 
Objective uncertainty Subjective uncertainty (Maidment, 1993) 
External uncertainty Internal uncertainty (Maidment, 1993) 
Statistical probability  Inductive probability (Carnap, 1936) 
Chance [Fr] Probabilité [Fr] Poisson, Cournot (Hacking, 1975) 

The distinction between these two types of uncertainty can have profound impact on risk, 
and on the meaning that one ascribed to risk. Yet, the questions raised by this fundamental 
distinction are by no means simple to answer. Most uncertainties are a mixture of things, so 
how does one practically differentiate natural variation from limited knowledge? Since the 
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two types of uncertainty reflect conceptually different things, how does one quantify each? 
If probability theory is used as a measure of uncertainty, are different types of probability 
needed for different types of uncertainties? Can and should the two types of uncertainty be 
combined? If they can and should be combined, how does one do so? These issues are not 
limited to the analysis of dam safety and flood damage; they are just as important to seis-
mic hazard, structural reliability, wind threat, and other risks of concern to the built envi-
ronment. 

2.3. Sources of uncertainty  

Uncertainty enters risk analysis models in many ways (Figure 2). Hazards of various types, 
such as flood loading, seismic ground shaking, SCADA malfunctions, or human error serve 
as input to the model. These are combined and processed by the model, and consequences 
are predicted as output. The model itself and a characterization of the hazards also require 
a variety of parameters. These reflect natural and other conditions, and calibrate the model 
to reality. 

 

Figure 2. Predictive risk model schematic 

Parameter uncertainty. The parameter values which serve as input both to the hazard 
characterization and to the risk model are usually not known precisely. There may be sta-
tistical error in estimating these values from historical data, or there may be experimental 
error in measuring these values in the laboratory or in situ. These are sometimes called, 
Type A evaluations of uncertainties. Knowledge about the parameter values may also come 
from engineering judgment or other information concerning the quantity. These are some-
times called, Type B evaluations of uncertainties. 

Parameter uncertainties result from an inability to assess exactly the parametric values 
from test or calibration data due to limited numbers of observations and the statistical im-
precision attendant thereto. These include data uncertainties deriving from (i) measure-
ment errors, (ii) inconsistency of data, (iii) data handling and transcription errors, and (iv) 
poor representativeness of sampling schemes due to time and space limitations.  

Structural or model uncertainty. The calculation will model itself and the mathematical 
equations by which it is expressed may themselves be inadequate or simplifications. Mod-
els are almost always approximations of reality based on assumptions which are made for 
expedience or for calculational convenience. There may also be latent variables in a model 
which are either ignored or possibly unknown. Thus, discrepancies are always expected be-
tween the model and true physics. 
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Algorithmic or numerical uncertainty. Algorithmic uncertainty arises from numerical 
errors or numerical approximations made in implementing the model in computer code. 
Most engineering models in dam safety are too complicated to solve exactly. For example, 
finite element (i.e., numerical) models may be used to calculate stress or seepage patterns, 
or event trees may be used to propagate uncertainties through stages of a failure. Lineari-
zation, truncation, interpolation, and other approximations maybe introduced to make 
these calculations more efficient. This results in some level of error. 

Initial and boundary condition uncertainty. The initial and boundary conditions of a 
model need to be specified before calculations can be made. Since many of the models in 
dam safety are differential, initial conditions state the value of a function or process at 
some time, usually t=0. Similarly, boundary conditions state the value of a function or pro-
cess at some location or boundary to the calculation. 

3. UNCERTAINTY PROPOGATION  

There are two categories of problems in uncertainty quantification: the forward propaga-
tion of uncertainty (where the sources of uncertainty are propagated through the model to 
predict overall uncertainty in the output), and inverse assessment where the model param-
eters are calibrated against know output. This section considers forward propagation. 

The general methodology in predictive modeling is to estimate a function that best charac-
terizes the parameters being modeled. More generally, suppose we observe a quantitative 
response Y and P different predictors, a relationship between Y and p is assumed, then the 
general mathematical representation of this relationship is of the form 

 𝑌𝑌 = 𝑓𝑓(𝑋𝑋) + ɛ (1) 

Here f is some fixed but unknown function of X1, . . . , Xp, and ɛ is a random error term, 
which is independent of X and has mean zero. This general expression f, models the infor-
mation provided by the predictors (input) variables about Y (Output variables). 

This is the fundamental basis of predictive modeling with the function f representing the 
predictor model that allows us to understand which components of X are important in ex-
plaining Y. There are several predictive modeling techniques of varying complexities of the 
function f. Introducing more complexity(flexibility) into the function f, may or may not lead 
to an improved model but certainly reduces the interpretability of the model. 

Typically, we have to estimate the form of the function f in order to be able to make predic-
tions and inferences. For predictions, Figure 1 shows the schematic of generating the re-
sponse estimates Y given the predictor variables X. In this setting, the function fo (model) 
can be treated as a black box since the mathematical form of the function is of little concern 
to us provided it’s generating accurate predictions. The accuracy of the prediction for the 
response Y is dependent on two error quantities; the irreducible and reducible error. As ex-
pected, the function fo will not be a perfect estimate for f and will introduce some error (re-
ducible error). Statistical learning is therefore concerned with improving this reducible er-
ror in order to improve the accuracy of our model predictions.  
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The reducible error by definition is an epistemic uncertainty which can be improved 
through fine tuning our modeling methodology. However, the irreducible error here is an 
aleatory uncertainty since the irreducible error is characterized by unmeasurable varia-
tion. For instance, let’s consider a model estimate fo with predictor sets of X; which then 
yields Yo=fo(X). Assuming fo and Y to be fixed, we can deduce the mathematical form for 
the errors in our predictions. 

 𝐸𝐸�𝑌𝑌 − 𝑌𝑌��
2

= 𝐸𝐸[𝑓𝑓(𝑋𝑋) + 𝜀𝜀 − 𝑓𝑓𝑜𝑜(𝑋𝑋)]2 
 = [𝑓𝑓(𝑋𝑋) − 𝑓𝑓𝑜𝑜(𝑋𝑋)]2 + 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀) 

(2) 

Where 𝐸𝐸�𝑌𝑌 − 𝑌𝑌��
2

 represents the average, or expected value, of the squared difference be-
tween the predicted and actual value of Y, and 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀) represents the variance associated 
with the error term ɛ. [𝑓𝑓(𝑋𝑋) − 𝑓𝑓𝑜𝑜(𝑋𝑋)]2 is the reducible error resulting from the discrepancy 
between the model outputs and the true responses of the system. 

The irreducible error will always restrain the accuracy of statistical predictions since it’s 
almost always unknown in practice (James et al., 2013). Much of statistical learning is 
therefore concerned with finding the balance in complexity and accuracy when estimating 
f. There are different methods of predicting the output Y from our model fo with a variety 
of predictive modeling methods adopted throughout the systems model formulation and 
construction. Broadly speaking, these methods can be classified into two main approaches; 
parametric methods and non-parametric methods.  

The parametric methods make an assumption about the functional form/shape of the func-
tion f. For example in a linear regression analysis the relationship between the predictor X 
and the response Y is assumed to be linear; thus f is linear. This greatly simplifies the analy-
sis. Linear regression is very useful in lots of applications but has its limitations as things in 
the real world don’t always follow a linear pattern and in such scenarios a simple linear re-
gression function will increase the reducible error and not lead to accurate predictions. The 
general form of the response function of a simple linear regression is, 

 𝑌𝑌 ≈ 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + ⋯+ 𝛽𝛽𝑝𝑝𝑋𝑋𝑝𝑝 (3) 

The linear assumption here means that the task of estimating the function f boils down to 
estimating the set of parameters (𝛽𝛽0,𝛽𝛽1,𝛽𝛽2... 𝛽𝛽𝑝𝑝). The higher the flexibility of the parametric 
model, the more parameters we need to account for in our model. Linear models are the 
most basic form of parametric modeling. The data are normally governed by some para-
metric probability distribution. This means that the data can be interpreted by one or other 
mathematical formula representing a specific statistical probability distribution that be-
longs to a family of distributions differing from one another only in the values of their pa-
rameters. 

Such a family of distributions may be grouped accordingly: 
• Beta distribution 
• Binomial distribution 
• Lognormal distribution 
• Exponential (Poisson) distribution 
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• Weibull distribution. 

Estimation techniques for determining the level of confidence related to an assessment of 
reliability based on these probability distributions are the methods of maximum likelihood, 
and Bayesian estimation (Stapelberg, 2009). A couple pf these distributions are adopted 
throughout the modeling process. 

3.1. Non Parametric Methods 

Non parametric methods, unlike parametric methods make no assumptions about the 
shape/functional form of f. Instead the approach is to estimate f that gets us as close to the 
data points as possible without capturing too much of the noise in the system (James et al., 
2013). With parametric methods, it is possible that the functional form used to estimate the 
underlying function f (i.e fo) is substantially different from the true underlying f; leading to 
a model which does not accurately fit the data. In contrast, non-parametric do not suffer 
from this issue since they essentially make no assumption about the underlying function f. 
However, non-parametric methods do suffer from high variance since it does not curtail the 
number of parameters used to make the fit. 

Parametric time series analysis-when the underlying models are correctly specified-can 
provide a powerful array of tools for data analytics (Fan and Yao, 2008). Notwithstanding, 
any parametric models are at best only an approximation to the true stochastic dynamics 
that generates a given data set. Meaning, parametric methods are plagued with the issues 
of models biases. According to Fan et al. (2003), “Many data in applications exhibit nonlin-
ear features such as nonnormality, asymmetric cycles, bimodality, nonlinearity between 
lagged variables, and heteroscedasticity.” They require nonlinear models to describe the 
law that generates the data. However, beyond the linear time series models, there are infi-
nitely many nonlinear forms that can be explored. This would be an undue task for any 
time series analysts to try one model after another. A natural alternative is to use nonpara-
metric methods. Non-parametric methods are better at reducing the possible modeling bi-
ases that plague their parametric counterparts. 

3.2. Wolf Creek Turbines Example 

This example shows how parametric methods are used within the systems model to char-
acterize the availability of the turbines at Wolf Creek GS. The reliable performance of gen-
erating unit depends on its availability on demand. Grid demands on the dam facility as a 
whole determines what capacity the combined turbines must be operating at. The Wolf 
Creek dam generates power using 6 Francis type turbines. If the demand on the system re-
quire all units to be working at full capacity, then all 6 turbines will have to be available on 
demand. 

 Availability in reliability terms, has to do with two separate events—failure and repair. 
Therefore, assigning confidence levels to values of availability cannot be done parametri-
cally, and a technique such as Monte Carlo simulation is employed, based upon the esti-
mated values of the parameters of time-to-failure and time-to-repair distributions. Passing 
the flow through the turbines of a hydroelectric generating station requires that the gener-
ating equipment is available and that the generated power can be accepted by the grid. If 
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the grid is unavailable then turbines can still be operated with a significantly reduced dis-
charge capacity under commonly called “spill-no load condition”. Modeling of the availabil-
ity of turbines to pass the flow can be modeled as a homogeneous or non-homogeneous 
Poisson Process. Homogeneous approach was applied to estimate the generating equip-
ment unavailability. Extensive data was available for all generating stations in the Wolf 
Creek Dam System.  

Analysis results for the Wolf Creek GS are provided below. Wolf Creek GS has six generating 
units with the following characteristics. 
 

Unit num-
bers 

Speed-no load discharge 
(m3/s) 

Discharge per unit 
m3/s 

Max 
1,2,3,4,5,6 25 142 

When a unit is unavailable, the total discharge capacity through that turbine is only 25.0 
m3/s. At full capacity, the discharge capacity through turbines equals 142 m3/s each. Occur-
rence of failures follows a homogeneous Poisson process with mean time between failures 
(MTBF) having the exponential distribution with the parameter 𝜆𝜆 = 24.18 days. These pa-
rameters were determined by fitting parametric distributions to the failure data with the 
best performing (fitting) distribution chosen to characterize the failure of the turbine units. 
The duration of the failures; which is a sum of the time to repair and the actual repair dura-
tion, is characterized by a lognormal distribution as shown below. 

Duration of failures follows the lognormal distribution with the following parameters: 

Mean: μ=27.72 hours 
Standard deviation: σ=189.4 
Location parameter: γ=0.1435 

 

Figure 3: plot of Discharge and Availability as a function of time  
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Figure 2 is a plot from the preliminary model test run and shows the availability of the tur-
bine and discharge through the turbine as a function of time. The rate of occurrence of the 
turbine failures are independent and identically distributed in time and thus a homogene-
ous Poisson process. The failure durations however, are characterized by a lognormal. It 
can be observed from the plot-especially the failures in the months of march, June and De-
cember-that the Unit 2 turbine has a constant rate discharge of 25 cubic meters. The rest of 
the time when the Turbine is available, the amount of discharge through the turbine are 
dictated by the SEPA curve in combination with the upstream daily flow. If Head elevation 
exceeds the SEPA prescribed maximum, then the turbines will be operated at capacity. On 
the other hand if the Head water elevation is below the prescribed Minimum SEPA level, 
then the turbines will be shut to conserve head. 

4. MODEL (STRUCTURAL) UNCERTAINTY 

Models/Simulators do not perfectly characterize a system, thus no matter how well a 
model is constructed, there will always be some discrepancy between the system and the 
simulator. Inescapably, there will be simplifications in the physics, based on features that 
are too complicated to be included in the model, features omitted due to lack of knowledge, 
disparities between the scales on which the model and the system operate, and simplifica-
tions and approximations in solving the mathematical equations underlying the system 
(Vernon et al., 2010). Thus, understanding structural uncertainty is one of the most chal-
lenging aspects of the uncertainty analysis. 

Another challenging aspect of structural uncertainty is quantifying the uncertainty that 
arises due to the parametrization of only the salient aspects of the system; thus, resulting in 
unmodelled physical processes. In model development, certain physical processes will in-
evitably be neglected if there’s a belief that these processes have little to no effect on the 
models accuracy yet adds complexity to the mathematical description. Moreover, during 
model development, there may be a failure to include certain physical processes due to lack 
of knowledge about those processes.  

4.1. Input Parameter Uncertainty 

Models of natural systems are made up of parameters that quantify physical processes and 
properties. These parameters must accurately characterize how the system properties af-
fect system behavior. Our knowledge of the suitable values of these input parameters is of-
ten incomplete or based on limited experimental investigations (Woodhouse et al., 2015). If 
the underlying physics of a system is misrepresented, then the meaning of the model and 
the interpretation of the parameters will be called into question (Vernon et al., 2010). 

This example is taken from another similar project-Mattagami Basin-Hydroelectric com-
plex. The example here demonstrates how the input uncertainty in daily temperature is 
modeled using historical monthly mean (normal), warmest and coldest temperature data. 
A plot of the historical data can be seen in figure 3. The warmest and coldest temperatures 
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for the day were taken to be two standard deviations from the mean of a normal distribu-
tion. Thus a truncated normal distribution was fit to the historical data to account for the 
uncertainty in the daily temperature. Figure 4 shows a monte-carlo simulation output plot 
for a 12 month period. From the plot, the variation in the daily inputs demonstrates that 
the normal distribution is being sampled on a daily basis to calculate the daily temperature 
based on the parameters of the normal distribution for that month. Of course, this is a sim-
ple approximation to capture the daily fluctuations in temperature. This model-although 
simple-does a good job at capturing the uncertainty in the input parameter (average 
monthly temperature) for calculating the average daily temperature.  

4.2. Accounting for Input parameter Uncertainty: Mattagami Basin Example 

This example is taken from another similar project-Mattagami Basin-Hydroelectric complex. 
The example here demonstrates how the input uncertainty in daily temperature is modeled 
using historical monthly mean (normal), warmest and coldest temperature data. A plot of 
the historical data can be seen in figure 3. The warmest and coldest temperatures for the day 
were taken to be two standard deviations from the mean of a normal distribution. Thus a 
truncated normal distribution was fit to the historical data to account for the uncertainty in 
the daily temperature. Figure 4 shows a monte-carlo simulation output plot for a 12 month 
period. From the plot, the variation in the daily inputs demonstrates that the normal distri-
bution is being sampled on a daily basis to calculate the daily temperature based on the pa-
rameters of the normal distribution for that month. Of course, this is a simple approximation 
to capture the daily fluctuations in temperature. This model-although simple-does a good 
job at capturing the uncertainty in the input parameter (average monthly temperature) for 
calculating the average daily temperature.  

 

Figure 4: Plot Historical Temperature data for Mattagami Basin 
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Figure 5: Plot of Simulated daily temperature values for a year 

5. OBSERVATIONAL ERROR 

Observational uncertainty arises due to errors in the measurement of natural systems, re-
sulting discrepancies between the real system observations and the outputs produced by the 
simulator. According to Woodhouse et al. (2015), “The aleatory aspect of many natural sys-
tems precludes a precise measurement”. Lack of measurement precision also adds to obser-
vational uncertainty. 

For example, let’s take hydrological modeling for instance; direct measurements of rainfall 
runoff with stream gauge sensors will inevitably have errors associated with the accuracy of 
the sensors. Furthermore, many observations of natural systems are not direct and rely on 
models to relate a direct measurement to a quantity of interest. Taking turbine discharge 
measurements in hydropower generation as an example, rating tables are usually used to 
compute the discharge through the turbines as a function of head water elevation and the 
opening of the turbine sluices. These indirect observations will additionally propagate errors 
due to the epistemic uncertainty in the models they adopt. These are similar to structural 
uncertainty the only difference being that these are data collected by the dam operators and 
not generated in the model. Thus, we have no control over these observational errors and no 
arrangements have yet been made to directly account for the effect of these errors. In the 
end, we expect the sensitivity analysis of the model parameters to account for any uncer-
tainty propagated due to observational errors in the input data used for the modeling.  

6. SCENARIO UNCERTAINTY 

A scenario is a plausible description of how a system might evolve over time but absent 
particular probabilities. Scenario uncertainty is akin to sensitivity analysis. The basic con-
cept is that a set of scenarios is identified based on possible combinations of input data. The 
output of the model for each scenario of inputs is determined and evaluated against the so-
lutions for other scenarios. This provides an insight into the consequences of each scenario. 
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However, since no probabilities are associated with the respective input, correspondingly 
there are no probabilities, relative or absolute, for the various scenario outputs. It may not 
be possible to estimate the probability of one particular outcome and thus scenarios of out-
comes are sometimes relied upon. A scenario is a plausible description of how a system 
might evolve over time but absent particular probabilities. Scenario uncertainty is akin to 
sensitivity analysis. The basic concept is that a set of scenarios is identified based on possi-
ble combinations of input data. The output of the model for each scenario of inputs is deter-
mined and evaluated against the solutions for other scenarios. This provides an insight into 
the consequences of each scenario. However, since no probabilities are associated with the 
respective input, correspondingly there are no probabilities, relative or absolute, for the 
various scenario outputs. 

The scenario example in this case is taken from the Mattagami project example where there 
was the need to construct different scenarios of the model with different electrical backup 
arrangements. Table 1 shows the alternative scenarios for electrical backup arrangements. 
All the other aspects of the systems model remain unchanged with the only difference in 
each scenario model being the spillway gates electrical back-up arrangements. The idea 
here is to run each scenario for a very long period-in this case a 1000 years- and determine 
which alternative arrangement offers the safest alternative from a dam breach perspective. 
Of course further sensitivity of each alternative may be performed and the results aggre-
gated over several runs to accurately arrive at the optimal electrical back-up configuration. 
A similar electrical back-up scenario analysis is one of the objectives of the wolf Creek GS 
project study. 

 
Table 3.Electrical Configuration Alternatives 
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Figure 6: Electrical Configuration Alternatives 

7. ACCOUNTING FOR UNCERTAINTY IN FORECASTS OR PREDICTIONS: STAMFORD EX-
AMPLE 

The Stamford Hurricane Protection Barrier levee system model outputs both the range of 
F-N curves generated during the epistemic loop as well as both the aleatory and epistemic 
(with percentiles) of the F-N curves(Figure 9). The Logic Tree (model simulator) permits 
the generation of uncertainty in the simulation parameters itself and to carry them through 
the calculation of aleatory variability. Practically, that means that after running one simula-
tion and calculating one mean and one set of critical percentiles, another simulation pro-
cess is run, generating another mean and another set of percentiles (very similar to the first 
one), and a third, fourth, or nth simulation is run, thus generating a new stochastic layer 
around the results. The correlations caused by common epistemic uncertainties are auto-
matically carried through the simulations to the final results. The simulator runs thousands 
of Monte Carlo simulations in order to find the P10, P50 and P90 epistemic percentiles as 
well as the aleatory curve of the uncertainty in the outputs generated (see figure 8).  
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Figure 7. Aleatory and Epistemic Uncertainty Curves for Levee System 

 

8. CONCLUDING REMARKS 

The problems arising from the characterization of uncertainty in quantitative models for 
physical systems are exceedingly common across different domains. This involves a sub-
stantial uncertainty quantification task. The first step in finding a solution to this problem 
is being able to identify the varying forms of aleatory and epistemic uncertainties pertain-
ing to the complex system being modeled. Subsequently, it is imperative to develop a 
framework within which to characterize the uncertainty about the complex systems. This 
framework is vital to unifying all of the sources of aleatory and epistemic uncertainties. 
Within this framework, all of the scientific, technical, computational, statistical and envi-
ronmental issues can be addressed in principle and then characterized using the appropri-
ate statistical methods. A model validation process is also needed to calibrate the model. 
Such validation process must provide a more unified approach to analyzing the several as-
pects of the overall model and the associated discrepancy between the model and the un-
derlying system. This is typically achieved by comparing model evaluations (predictions) 
with real world system data/observations.  
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