

DETERMINING FACTORS AFFECTING PUBLIC PRIVATE PARTNERSHIP (P3) ACCEPTANCE

Vandit Shah, MSCE Deepak Sharma, Ph.D. 2017 Project Management Symposium

Presentation Outline

- Introduction
- Research Motivation
- Principal Component Analysis
- Sample Example
- Case Study
- Results and Conclusion

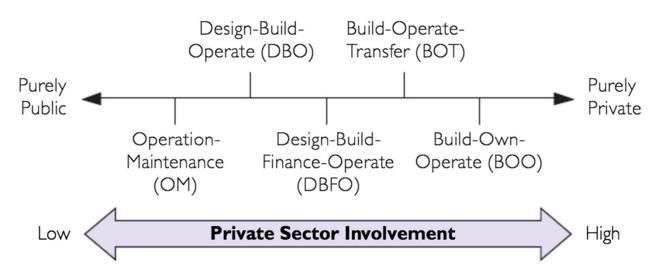
PUBLIC PRIVATE PARTNERSHIPs (PPPs)

What is a Public Private Partnership (PPP)?

- A contractual agreement between a public sector agency (federal, state, or local) and a private entity. (NCPPP)
- Works together on a platform to provide public service and goods.
- Improves the schedule, quality, and risk of a project.

Public Private Partnership

- PPPs are widely accepted in countries like Canada, United Kingdom, and Australia.
- In the US, only 33 states, District of Columbia and One US territory (Puerto Rico) has PPP legislation.
- Several others are considering to have PPP enabling legislation


PPP Types

- Operation-Maintenance (OM)
- Design-Build (DB)
- Design-Build-Operate (DBO)
- Design-Build-Finance-Operate-Maintain (DBFOM)
- Build-Operate-Transfer (BOT)
- Build-Own-Operate (BOO)

http://pmsymposium.umd.edu/pm2017/

Name: Vandit Shah and Deepak Sharma UMD Project Management Symposium May 4-5, 2017 Slide 7

Risk Allocation in PPPs

Source: Kwak et. al., 2009

Research Motivation

Infrastructure Quality

- United States ranks
 16th in the world for quality of infrastructure.
- Government spends more on health care, social security and defense.

Infrastructure Grade

- Report Card for America's Infrastructure:
 D+ Grade and for highways: D Grade
- 42% of urban highways are congested.
- 1 in 4 bridges in the national highway system is structurally deficient.
- \$3.6 trillion estimated investment needed by 2020.

Source: Multiple Websites Listed in Reference Section

The thought that triggered this research

- Some states that that have demographic similarities have accepted PPPs.
 - The states with higher employment potential
 - Highly populated
- People in these states tend to accept PPPs

List of Available Demographic Factors

- Congestion
- Vehicles Miles Travelled
- Per Capita Income
- Gender Distribution
- Population Density
- Average Education
- Traffic Count
- Travel Time to Work
- Cost of Living

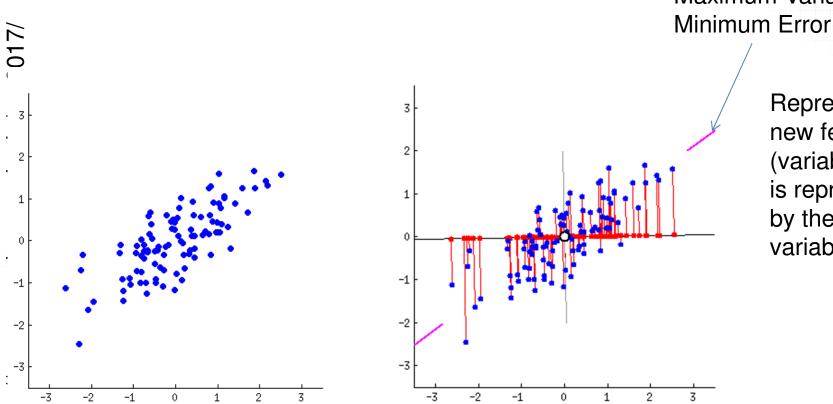
Methodology – Principal Component Analysis (PCA)

PCA is a data reduction technique

Used in Sociology

Used in Image Processing

What is Principal Component Analysis (PCA)


- Principal Component Analysis (PCA) is a <u>data</u> reduction technique.
 - Allows for summarizing things/facts/processes (variable of interest) with lesser number of characteristics

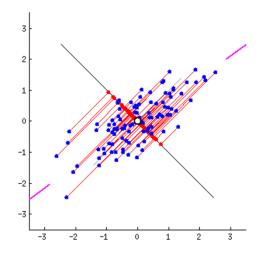
(For example: 47 characteristics can be represented by just 3 characteristics)

Enables representing the combining several characteristics into fewer characteristics

(For example: the 3 characteristics are combination of 39 characteristics)

What is Principal Component Analysis (PCA) Maximum Variance and

Represents new feature (variable) that is represented by the two variables


Image Source: https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues

http://pmsymposium.umd.edu/pm2017/

Name: Vandit Shah and Deepak Sharma UMD Project Management Symposium May 4-5, 2017 Slide 16

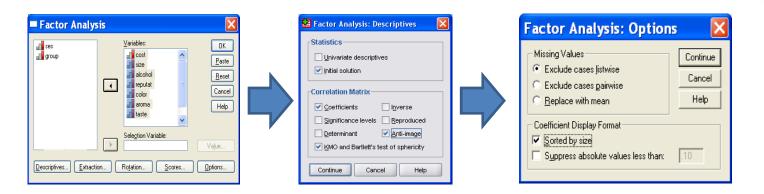
What is Principal Component Analysis (PCA)

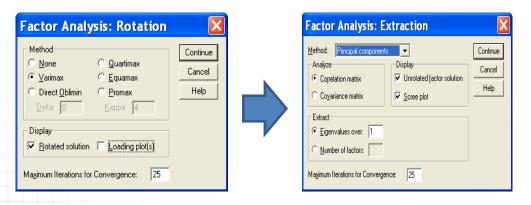
Imagine the red lines a springs

PCA enables us to identify all such new features (variables) that will enable covering maximum variance and reduce the errors to minimum

Image Source: https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues

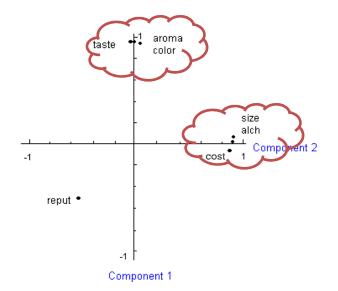
An Example on PCA Application




Example – Lets analyze Beer

- Consumers rating for seven different characteristics of a beer:
 - low COST
 - high SIZE of bottle
 - high ALCOHOL content
 - REPUTATION of Brand
 - COLOR
 - AROMA
 - TASTE

SPSS Steps for PCA



Example Result

	Component		
	1	2	
TASTE	.960	028	
AROMA	.958	1.E-02	
COLOR	.952	6.E-02	
SIZE	7.E-02	.947	
ALCOHOL	2.E-02	.942	
COST	061	.916	
REPUTAT	512	533	

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization

Rotated Component Matrix

Grouped Variables

Naming Components

- Component 1
 - Higher factor loading value for TASTE, AROMA, and COLOR"
 - This component can be recognized as AESTHETIC QUALITY of beer.
- Component 2
 - Higher factor loading value for large SIZE, high ALCOHOL content, and low COST.
 - The component can be recognized as a CHEAP DRINK.

Using PCA for Demographic Factors Influencing PPPs

States Selection

- 3 most populated US States:
 - California
 - Texas
 - Florida
- Total 29 cities of 3 States considered as MSA (Metropolitan Statistical Area).

California

- State of California is known for extensive highway networks.
- Los Angeles and San Francisco are facing congestion issues.
- Los Angeles comes in world's top 10 traffic congestion cities.
- According to Forbes, LA takes 41% extra travel time.

Texas

- Austin ranks 10th in nation for worst traffic congestion.
- Rapid growth in population affects the traffic condition significantly.

Florida

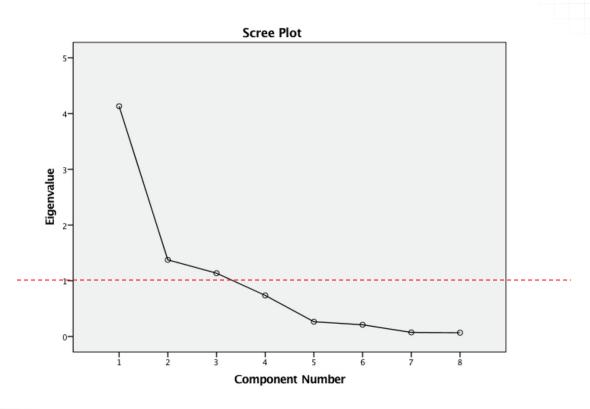
- 60% of population lives in only 5% of the state's region
- 7 cities from the state of Florida are facing major congestion challenges.
- South Florida ranks 11th in traffic congestion among 498 metro areas.

Variables Selection

- 9 Demographic variables of 23 cities:
 - daily COST OF DELAY,
 - daily VEHICLE MILES TRAVELLED,
 - per capita INCOME,
 - **GENDER** distribution,
 - population **DENSITY**,
 - average EDUCATION,
 - · daily TRAFFIC count,
 - Average TRAVEL TIME, and
 - COST of LIVING

Results

Kaiser-Meyer-Olkin Measure	.604	
	Approx. Chi-Square	148.617
Bartlett's Test of Sphericity	df	36
	Sig.	.000


Results

Total Variance Matrix

	Initial Eigenvalues		Extraction Sums of Squared Loadings		Rotation Sums of Squared Loading				
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulativ %
1	4.133	51.659	51.659	4.133	51.659	51.659	2.871	35.884	35.884
2	1.375	17.193	68.852	1.375	17.193	68.852	2.604	32.555	68.439
3	1.136	14.204	83.056	1.136	14.204	83.056	1.169	14.617	83.056
4	.738	9.221	92.276						
5	.266	3.322	95.599						
6	.211	2.640	98.238						
7	.073	.917	99.155						
8	.068	.845	100.000						
Extraction Meth	od: Principal C	Component An	alysis.						

Results

http://pmsymposium.umd.edu/pm2017/

Scree Plot Indicating Three Principal Components

Results

Rotated Component Matrix Indicating Three Principal Components

Variables	1	2	3
Population Density	0.905		
Cost of Living (daily)	0.823	0.307	
Average Education	0.770	0.332	
Per Capita Income (per day)	0.751	0.499	
Traffic Count Daily		0.901	
Cost of Delay (daily)	0.384	0.837	
Average Travel Time (daily)		0.794	
Vehicle Miles Travelled (daily)			0.984

http://pmsymposium.umd.edu/pm2017/

Results

Communalities

Variables	Initial	Extraction
Congestion Cost	1.000	.902
Vehicle Miles Travelled	1.000	.937
Per Capita Income	1.000	.850
Travel Time to Work	1.000	.885
Cost of Living	1.000	.857
Average Education	1.000	.886
Traffic Count	1.000	.873
Population Density	1.000	.835
Gender Distribution	1.000	.731

Are the results valid?

- PCA is a large sample test!
- Desirable to get large samples
- Researchers have demonstrated that if the communalities are higher than 0.6 (MacCallum et al., 1999; Henson & Roberts, 2006) and if the average of communalities is greater than 0.7 (Field, 2009; Yong & Pearce, 2013)
 - PCA using relatively small sample size are acceptable; the results obtained from such analysis will be stable.

Interpreting the Results

Component 1

Four variables per capita income (0.751), cost of living (0.823), average education (0.77), and population density (0.905) make first component.

Component named as REGIONAL DEVELOPMENT.

Component 2

Cost of delay (0.837), average travel time (0.794) and traffic count daily (0.901) make the second component.

Component named as CONGESTION in the region

Interpreting the Results

Component 3

Daily Vehicle Miles Travelled (0.984) makes the third component.

Component is VEHICLE MILES TRAVELLED

Conclusion, Implications and Path Ahead

- Three factors tend to directly influence people's acceptance on PPPs in California, Texas and Florida.
- Agencies can conduct similar research with more data and more number of variables.
- Agencies can conduct micro level surveys (by administering questionnaire survey to end-users of the region)

Conclusion, Implications and Path Ahead

- Conducting micro level questionnaire surveys could help identify other factors
- This research can be extended to other states that do not plan to adopt PPPs
- Results can be used by outreach programs.
- Government and infrastructure agencies can take steps to ensure PPP acceptance and success

References

- Wuensch, K. L. (2012). Principal components analysis: SPSS. Retrieved from http://faculty.ksu.edu.sa/ABID/609QUA/PCA-SPSS.pdf
- Pula K. (2016) Public-Private Partnerships for Transportation Categorization and Analysis of State Statutes.
 National Conference of State Legislatures, Washington DC.
- Papajohn, D., Cui Q., and Bayraktar M. E. (2011). Public-Private Partnerships in U.S. Transportation: Research Overview and a Path Forward. Journal of Management in Engineering, Vol. 27(3), pp. 126-135
- Cui, Q. and Lindly, J.K. (2010). Evaluation of Public Private Partnership Proposals. University Transportation Center for Alabama report # 730-941, Tuscaloosa, AL.
- Parinet B., Lhote A., Legube B., (2004). Principal component analysis: an appropriate tool for water quality evaluation and management—application to a tropical lake system. Ecological Modelling Vol. 178, Pp. 295– 311
- MacCallum R. C., Widaman K. F., Zhang S., and Hong S. (1999). Sample Size in Factor Analysis. Psychological Methods. Vol 4 (1), Pp. 84-99.
- ASCE (2017) "Infrastructure Report Card Roads", American Society for Civil Engineers.
- World Economic Forum, "Global Competitiveness Report 2014-2015

Websites

- https://obamawhitehouse.archives.gov/blog/2015/01/16/encouraging-private-sector-invest-americasinfrastructure
- http://www.wnyc.org/story/286109-infrastructure-report-card-says-3-6-trillion-needed-by-2020/
- https://www.infrastructurereportcard.org/cat-item/bridges/
- https://www.infrastructurereportcard.org/cat-item/roads/

http://pmsymposium.umd.edu/pm2017/

Thank you for your undivided attention

Questions?

Contact Information:

Vandit Shah

Graduate Research Assistant

California State University Fullerton

Email: vsvanditshah@gmail.com

Phone: 714-856-2658

Deepak Sharma, PhD (Corresponding Author)

Assistant Professor

Department of Civil and Environmental Engineering

California State University, Fullerton

Phone: 657-278-3450 (O)

Email: dsharma@fullerton.edu, dksharma77@gmail.com