

A.J. CLARK SCHOOL OF ENGINEERING Civil & Environmental Engineering Department

LIFE CYCLE COST OPTIMIZATION WITHIN DECISION MAKING ON ALTERNATIVE DESIGNS

Shiven Sompura, Aakash Goyal, Hakob Avetisyan

2018 Project Management Symposium

Civil & Environmental Engineering Department

http://pmsymposium.umd.edu

Contents

- Introduction
- LCCA Model
- Optimizing the LCC
- Case Study
- Result and Analysis

Introduction

- Precast Concrete Pavements.
- Faster construction, thinner slabs and more durable life.
- Reduced construction cost.

http://www.concreteconstruction.net/projects/commercial-industrial/precast-concrete-pavement_o

Aakash Goyal UMD Project Management Symposium May 10-11, 2018 Slide 4

INTRODUCTION

- What about the cost over its life?
- Will it be beneficial?
- How to decide where to invest more?
- The answer is, OPTIMIZING most feasible way!

http://pmsymposium.umd.edu

LCCA Model

 The cost incurred over life of the pavement is the Life Cycle Cost including initial construction cost, maintenance cost, operational cost, user cost and salvage value.

Evaluation methods

- Net Present Worth (NPW).
- Internal rate of return method (IRR).
- Benefit-cost ratio (B/C).
- Equivalent Uniform Annual Cost (EUAC).

Net Present Worth

- The output of the NPW method is a lump sum of initial and future costs in present value.
- In our case assuming the value of one mile of pavement after ten years in terms of today's scenario.

https://www.12manage.com/description_npvgo.html

Using Optimization for NPV

- Defining the purpose and scope of decision.
- Defining range and key parameters.
- Summarizing data to the evaluated alternatives.

- Economic evaluation of alternatives
- Selection of the optimum alternative.

Case Study Case 1

- In the first case an average quality work was programmed.
- Initial construction cost was moderate for one mile of precast pavement.
- The NPV obtained was \$2741715.57.

A.J. CLARK SCHOOL OF ENGINEERING
Civil & Environmental Engineering Department

Aakash Goyal UMD Project Management Symposium May 10-11, 2018 Slide 10

MODEL STATISTICS						

BLOCKS OF EQUATIONS	7	SINGLE EQUATIONS	7
BLOCKS OF VARIABLES	7	SINGLE VARIABLES	7
NON ZERO ELEMENTS	13	NON LINEAR N-Z	6
DERIVATIVE POOL	20	CONSTANT POOL	16
CODE LENGTH	20		

GENERATION TIME = 0.000 SECONDS 3 MB 25.0.3 r65947 WEX-WEI

EXECUTION TIME = 0.000 SECONDS 3 MB 25.0.3 r65947 WEX-WEI

GAMS 25.0.3 r65947 Released Mar 21, 2018 WEX-WEI x86 64bit/MS Windows 05/02/18 23:56:12 Page 5

General Algebraic Modeling System

Solution Report SOLVE LCCA Using NLP From line 27

SOLVE SUMMARY

MODEL LCCA OBJECTIVE z

TYPE NLP DIRECTION MINIMIZE

SOLVER CONOPT FROM LINE 27

**** SOLVER STATUS 1 Normal Completion **** MODEL STATUS 2 Locally Optimal **** OBJECTIVE VALUE 2741715.5700

 RESOURCE USAGE, LIMIT
 0.000
 1000.000

 ITERATION COUNT, LIMIT
 4
 200000000

 EVALUATION ERRORS
 0
 0

CONOPT 3 25.0.3 r65947 Released Mar 21, 2018 WEI x86 64bit/MS Windows

Case 2

- In this case, the quality of construction was highly compromised. It was reduced by 40%.
- The costs over the life of pavement increased significantly increased.
- NPV obtained was \$2129900.3731

A.J. CLARK SCHOOL OF ENGINEERING
Civil & Environmental Engineering Department

Aakash Goyal UMD Project Management Symposium May 10-11, 2018 Slide 12

SOLVE SUMMARY

MODEL LCCA OBJECTIVE z

TYPE NLP DIRECTION MINIMIZE

SOLVER CONOPT FROM LINE 27

**** SOLVER STATUS | 1 Normal Completion

**** MODEL STATUS 1 Optimal

**** OBJECTIVE VALUE 2129900.3731

RESOURCE USAGE, LIMIT 0.000 1000.000

ITERATION COUNT, LIMIT 4 2000000000 EVALUATION ERRORS 0 0

CONOPT 3 25.0.3 r65947 Released Mar 21, 2018 WEI x86 64bit/MS Windows

CONOPT3 version 3.17G

Copyright (C) ARKI Consulting and Development A/S

Bagsvaerdvej 246 A

DK-2880 Bagsvaerd, Denmark

Pre-triangular equations: 0 Post-triangular equations: 3

^{**} Optimal solution. There are no superbasic variables.

Case 3

- In the third case the Initial construction cost was increased significantly.
- High quality construction.
- The NPV obtained was \$2910674.7417.

Civil & Environmental Engineering Department

Aakash Goyal UMD Project Management Symposium May 10-11, 2018 Slide 14

SOLVE SUMMARY

MODEL LCCA OBJECTIVE z

TYPE NLP DIRECTION MINIMIZE

SOLVER CONOPT FROM LINE 27

**** SOLVER STATUS 1 Normal Completion

**** MODEL STATUS 1 Optimal

**** OBJECTIVE VALUE 2910674.7417

RESOURCE USAGE, LIMIT 0.000 1000.000

ITERATION COUNT, LIMIT 4 2000000000 EVALUATION ERRORS 0 0

CONOPT 3 25.0.3 r65947 Released Mar 21, 2018 WEI x86 64bit/MS Windows

CONOPT3 version 3.17G

Copyright (C) ARKI Consulting and Development A/S

Bagsvaerdvej 246 A

DK-2880 Bagsvaerd, Denmark

Pre-triangular equations: 0
Post-triangular equations: 3

^{**} Optimal solution. There are no superbasic variables.

http://pmsymposium.umd.edu

Result

Initial Construction Quality	NPV
Low Quality	\$2129900.37
Average Quality	\$2741715.57
High Quality	\$2910674.74

Aakash Goyal UMD Project Management Symposium May 10-11, 2018 Slide 16

Analysis

- This case study presents a model based on very small part of the pavements.
- The results obtained seem very close.
- In real world these numbers vary significantly.

Aakash Goyal UMD Project Management Symposium May 10-11, 2018 Slide 17

Analysis

http://pmsymposium.umd.edu

Analysis

- The graph shows that the NPV after a certain limit goes constant.
- Which means that increasing the quality or construction cost beyond feasible region does not give any profit.
- The optimizing makes you decide the most profitable option inside the feasible region.

A.J. CLARK SCHOOL OF ENGINEERING
Civil & Environmental Engineering Department

Aakash Goyal UMD Project Management Symposium May 10-11, 2018 Slide 19

This Photo by Unknown Author is licensed under CC BY-NC-ND

A.J. CLARK SCHOOL OF ENGINEERING
Civil & Environmental Engineering Department

Aakash Goyal UMD Project Management Symposium May 10-11, 2018 Slide 20

