
Name 
UMD Project Management Symposium
May 4-5, 2017
Slide 1

h
tt

p
://

p
m

sy
m

p
o

si
u

m
.u

m
d

.e
d

u
/p

m
20

17
/

h
tt

p
://

p
m

sy
m

p
o

si
u

m
.u

m
d

.e
d

u
/p

m
20

18
/

Johnny D. Morgan, PhD
2018 Project Management Symposium

APPLYING 1970 WATERFALL LESSONS 
LEARNED WITHIN TODAY’S AGILE 
DEVELOPMENT PROCESS



Overview of the Presentation

• Purpose:  This presentation will review a paper published in 
1970 that describes 5 steps to reduce development risks 
associated with waterfall development activities and describe 
how these steps are incorporated into today’s agile 
development practices

• Companion Symposium Paper is Available

2



My Experiences That Influenced Developing This Presentation

• Geosituational Demonstration System
‒ Intelligence Analyst System
‒ IBM PC Based
‒ 8 Person Team
‒ Approximately 100 KSLOC in size
‒ Monthly Code Deliveries for Evaluation
‒ Developed from 1988 through 1990

• Navy Undersea Surveillance System
‒ Large Scale, Wide-Area System
‒ Multiple Interconnected Sites
‒ 100+ Processing Cabinets
‒ 200+ Engineers/Developers
‒ 2000+ KSLOC in size
‒ 3+ Years of Development to Final Delivery
‒ Developed from 1990 through 1994

3



Managing The Development of Large Software Systems

• Meet Winston W. Royce
‒ American Computer Scientist
‒ Received his PhD in 1959
‒ Started as a Project Manager at TRW in 1961
‒ Became a Director at Lockheed’s Software 

Technology Center in the 1980s
‒ Retired in 1994 and died at his home Clifton, 

VA in 1995

• In 1970, he published a paper entitled 
“Managing the Development of Large 
Software Systems”  (Royce 1970)
‒ Described his personal views about 

managing large software projects based on 
assignments during his past 9 years 
developing software packages for spacecraft 
mission planning, commanding, and post 
mission analysis

‒ He admits to becoming prejudiced by his 
experiences and the paper relates some of 
these prejudices

4

Most people remember this 
diagram from his paper!



Belief in the Concept, But

• Royce states “I believe in the 
concept but the implementation 
is risky and invites failure.”

• If “the testing phase….is the first 
event for which timing, storage, 
input/output transfers, etc., are 
experienced as distinguished 
from analyzed…the required 
design changes are likely to be 
so disruptive….one can expect 
up to a 100 percent overrun in 
schedule and/or costs”

• “I believe the illustrated approach is fundamentally sound.  The remainder 
of the discussion presents five additional features that must be added to 
this basic approach to eliminate most of the development risk.”

5



Royce Was A Lean Thinker

• “There are two essential steps 
to all computer program 
developments….there is the 
analysis step, followed by the 
coding step.”

• “Plan(s) to manufacture larger 
software systems, and keyed 
only to these steps, however, is 
doomed to failure”

• “Many additional development steps are required, none contribute as 
directly to the final product as analysis and coding, and all drive up the 
development costs…..Customer personnel typically would rather not pay 
for them and development personnel would rather not implement them.”

6

“The prime function of management is to sell these concepts to both groups 
and then enforce compliance on the part of development personnel.”



Iterative Intersection Between the Various Phases

• Royce discussed the interactive 
relationship between successive 
development phases.

• He champions a change process 
and a moving baseline to which 
to return in the event of 
unforeseen design difficulties
Ø Changing requirements
Ø Results from modeling and 

prototyping
Ø Inability to translate concepts 

into working software

7

I have found that an effective change 
process is key to any organization and 
supporting development process being 

agile or responsive.



8

Step 1:  Program Design Comes First
• Begin the design process with program designers, not analysts 

or programmers
• Design, define, and allocate the data processing modes
• Write an overview document that is understandable, 

informative, and current

Royce refers to this as a Preliminary Design and it will impose constraints on the 
program designer to ensure that his software fits into enterprise!  



Agility versus Architecture
Agile Perspective:
• Architectures emerge from self-

organizing teams

• Be resolutely adaptive: respond only 
when changes occur

• Perceive architecture as Big Up-Front 
Design (BUFD) with You Ain’t Gonna 
Need it (YAGNI) features

• Focused on functional requirements

Architecture Perspective:
• Architectures naturally seek the 

maximum level of complexity (Law of 
Entropy)

• Anticipate change, plan for them, and 
isolate their impact

• Small successive refactoring through 
each sprint is insufficient

• Focused on both functional, and non-
functional requirements (Reliability, 
Availability, Maintainability, 
Performance, Information Security, 
etc.)

9

• The Scaled Agile Framework (SAFe) introduces the concept of Architectural Runway
Ø It provides the necessary technical basis for developing business initiatives and 

implementing new features and capabilities
Ø It exists when the enterprise’s platforms have sufficient technological infrastructure to 

support the implementation of the highest-priority, near-term features without excessive, 
delay inducing redesign (Leffingwell et al., 2017)



Defining Architecture

10

Architecture:  Encompasses the set of significant decisions about the structure and 
behavior of the system.  These decisions prove to be the hardest to undo, change and 
refactor (Abrahamsson et al., 2010)

Concepts &
Requirements

Operate and Maintain

Try to Interleave architectural stories and functional stories

Design, Develop, Integrate. and Verify

Non-Functional Requirements

Architecture

Capability Roadmap



Step 2:  Document the Design

• “The real value of good 
documentation begins 
downstream…during the testing 
phase and continues through 
operations and redesign”

• Without documentation:
Ø It is difficult to find and correct 

mistakes
Ø The people who wrote the code are 

generally the people who then have 
to maintain the code

Ø After initial operations, to add new 
features to the software may 
require reverse engineering of the 
existing code 

11

“A verbal record is too intangible to provide an adequate basis for an interface or 
management decision….If the documentation does not exist there is yet no design, only 

people thinking and talking about the design which is of some value, but not much”



Thoughts on Documentation

• The code is the truth, but not the whole truth.
• Large architectural decisions can not be discerned from the 

code itself
‒ The results of these decisions are scattered throughout the code
‒ Their meaning and presence are in the heads of the code’s creators and 

not easily evident by staring at the code (Booch, 2011)
• In agile software development, the code changes often, and 

thus keeping the lowest level documentation in-line with the 
code is difficult (almost futile)

• “The architect’s and designer’s job is not to pass along ‘the 
design’ but to pass along ‘the theories’ driving the design…. 
‒ This latter goal is more useful and more appropriate….
‒ Knowledge of the theory is tacit in the owning, so passing along the theory 

requires passing both explicit and tacit knowledge” (Cockburn, 2007)

12

Document those items that helps the next programmer build
an adequate theory of the system/program



Recommendations on Documentation

• Change the mindset from “document” to “artifact”
‒ A collection of knowledge, irrespective of the media that contains it

• Collect and maintain the following:
‒ Knowledge that defines to users, operators, and maintainers how to operate and maintain the system
‒ Knowledge that describes how to rebuild and redeploy the system should a problem or disaster occur. 
‒ Knowledge that allows future personnel to modify the system over it’s life cycle (The theory of the system)

13

Concepts &
Requirements

Module 1

Module 2 

Module 
N

The Code ItselfThe Theory of the System Rebuild/Redeploy

Configuration 
Management

Artifacts

Operate and Maintain



Step 3:  Do It Twice

• “If the computer program in 
question is being developed for 
the first time, arrange matters 
so that the version delivered to 
the customer…..is actually the 
second version insofar as critical 
design/operations areas are 
concerned.”

• “They must quickly sense the 
trouble spots in the design, 
model them, model their 
alternatives…”

• “At least perform experimental 
tests of some key hypotheses”

14

Many People Now Say “Fail Fast!”

Build a Minimum Viable Product (MPV)



Step 4: Plan, Control and Monitor Testing

• “Most errors are of an obvious 
nature that can be easily 
spotted by visual 
inspected…Every bit of code 
should be subjected to a visual 
scan by a second party…”

• “Test every logic path in the 
computer program at least 
once…this step will uncover the 
majority of  coding errors.

• “After the simple errors are 
removed, then it is time to turn 
over the software to the test 
area for checkout purposes”

15

Modern Software Practices Now Include:
• Test Driven Development (TDD)
• Pair Programming
• Code Reviews
• Separate Development, Test, and 

Production Environments
• System Test Teams
• Code Coverage Tools
• Automated Testing Tools



Step 5: Involve the Customer

• “For some reason what a 
software design is going to do is 
subject to wide interpretation 
even after previous agreement.

• It is important to involve the 
customer in a formal way so that 
he is has committed himself at 
earlier points before final 
delivery.

• To give the contractor free rein 
between requirements 
definition and operation is 
inviting trouble.

• (Add points where)…Insight, 
judgement and commitment of 
the customer can bolster the 
development effort”

16

Agile Practices now include a Product 
Owner as a Member of the Agile Team

Time

What the customer 
wants

What the 
contractor delivers



Very Different Perspectives

17

Everyone Knows This (Page 2)

Now you Know This (Page 11)

Five Steps to Reduce Risk:
1. Program Design Comes First
2. Document the Design
3. Do It Twice
4. Plan, Control and Monitor 

Testing
5. Involve the Customer



Contact Information

Johnny D. Morgan, PhD
INCOSE ESEP, AWS CSA & CD
PMI PMP, SAFe Agilist
General Dynamics Information Technology
johnny.morgan@gdit.com

18



References
Abrahamsson, P., Babar, M. A., & Kruchten, P. (2010). Agility and architecture: Can they coexist? IEEE Software, 

27(2), 16-22. 

Booch, G. (2011). The architect's journey. IEEE Software, 28(3), 10-11. 

Cockburn, A. (2007). Agile software development; the cooperative game (Second Edition). Boston, MA: Pearson 
Education, Inc.

Leffingwell, Dean, Alex Yakyma, Richard Knaster, Drew Jemilo, and Inbar Oren. 2017. SAFe Reference 
Guide: Scaled Agile Framework for Lean Software and Systems Engineering. Vol. 2017. Willard, Ohio: 
Pearson, Education, Inc.

Royce, Winston W. 1970. "Managing the Development of Large Software Systems." Proceedings, IEEE WESCON.

19


