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Abstract 

Decision-making for supply chains in any industry providing products and services for profit is 
multi-dimensional. Traditionally, decisions made were based on the principle of meeting the 
demand. While meeting the demand is of highest priority, other important aspects include the cost, 
policy and regulatory compliance, and competition in the market. To arrive at an outcome that will 
satisfy all these aspects collectively and arrive at an equilibrium from which no participant in the 
market wants to deviate can be challenging. The problem becomes even more complex when there 
are more than one non-cooperative suppliers in the market and the decision-maker for a larger or 
lead supplier should decide the best strategic move supporting supply network expansion given 
the anticipated moves of other smaller or follower suppliers in the market. To aid decision-making 
in this process, a two-level leader-follower problem known as “Stackelberg game” is developed, 
in which the lower-level problem solves an equilibrium problem, which when combined with 
upper-level problem becomes a mathematical problem with equilibrium constraints (MPEC). 
Stackleberg games are commonly used by governments for analyzing regulations on the economy 
as a whole or on particular industry. Stackelberg game is regarded as a non-cooperative game 
where the follower makes its move by accepting the leader’s choice and the leader, by anticipating 
that the follower makes its choice, solves for both the upper and lower-level problem variables in 
order to maximize its own profit or for any other chosen.  

 

Introduction 

A supply chain is one of the most important aspects for running any business successfully, and if 
done strategically and properly it can benefit the companies in a long-run. In order to be able to 
analyze the potential of improvements it is worth to define what is exactly the supply chain and 
how can one improve the processes of decision-making. There are many definitions in the literature 
for supply chain management (SCM). Since past few decades the supply chain management is 
growing rapidly and many researchers were targeting its different angles with a hope that the new 
findings will allow to serve the industries to be more stable and cost effective. It is about the 
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reliability and cost effectiveness when it comes to decision-making while meeting the expected 
quality. By expected quality it is referring to the acceptable and agreed conditions of anything that 
the client is looking for in any industry. In some cases the quality can be considered the least 
satisfactory level of functionality or specifications of delivered goods and products, while in other 
cases the level of the satisfaction will be exceeded to secure future business with the same client 
or others. In any case, the decision-making process is not straightforward and requires more 
advanced analysis that can allow evaluation of actions to be taken.   

 

Definitions and the Problem 

Supply chain management was defined over the last few decades, modified and improved along 
with technological advancement in the industry. Since the 1990’s, one of the early definitions of 
SCM was by Novak and Simco (1991), which in particular defined it as the flow of goods from 
supplier that gets the goods from the manufacturer and distributor who is responsible for delivering 
the goods to the final user. Likewise, in 1993 Cooper and Ellram (1993) suggested that SCM is an 
integrative philosophy for managing the total flow of goods through distribution channel from the 
supplier to the final user. Yet, in 2001 Chopra and Meindl (2001) defined it as a chain that consists 
of all involved stages that are involved directly or indirectly in the process of fulfilling a customer 
request. In a similar approach, Mentzer et al. (2001) presented it as “The systemic, strategic 
coordination of the traditional business functions and the tactics across these business functions 
within a particular company and across businesses within the supply chain, for the purposes of 
improving the long-term performance of the individual companies and the supply chain as a 
whole.” Given these definitions it can be acknowledged that over time indeed all researchers agree 
that this process is not straightforward and requires a careful and integrated analysis of the 
processes and steps involved.  

 One option to address the problem of making informed decisions is to look at many 
representatives in the market collectively yet each and each of them will have its own goals and 
perspective. Such understanding will help in forming the market structure in a game-theoretic 
setup where those who represent the market would be the players. In real life there will be larger 
players who will be treated as leaders as their decisions will drive the market movement while 
other may be seen as followers.  

Traditionally, all the decisions-made by the suppliers were based on the principle of 
meeting the demand, while the profit was the target element for any company. Over time, due to 
the changing nature of the market policies, regulations and rules where suppliers operate and need 
to comply, the single goal of just meeting the demand while maximizing the profits is becoming 
more challenging. As such other equally important aspects include the cost reductions due to 
increasing worldwide competition, policy and regulation compliance. To find an outcome that will 
satisfy all these aspects together and arrive to an equilibrium from where no player in the market 
wants to deviate can be problematic.  This market is not a cooperative setup and each player has 
its own objectives of surviving in the market and expanding its business by expanding its supply 
capacities. While for the follower companies it might be more challenging to invest in expansion 



3 
 

of their market the large companies can allow themselves to face such expenses and yet in the 
long-run be even more profitable.  

To aid decision-makers in the process of SCM and strategic planning a mathematical game-
theoretic bi-level leader-follower problem known as Stackelberg game is developed, in which the 
lower-level problem formulated for this research solves an equilibrium problem, which when 
combined with upper-level problem is known as mathematical problems with equilibrium 
constraints (MPEC). Stackleberg games are commonly used by governments for analyzing 
regulations on an economy or on a particular industry. Stackelberg game is thought to be a non-
cooperative game where the follower makes its move by accepting leader’s choice and the leader 
by anticipating that follower takes its choice solves its problem for both upper and lower-level 
problem variables for own profit maximization or for any other objective. The problem becomes 
even more challenging if the market consists of more than one leader in the upper level. For 
simplicity we will target the case when one large supplier acts as a leader on the top level problem 
for profit maximization. To illustrate the idea of a supply network, one can consider the water 
supply where the product is being delivered to the final user through the system where the water 
can be supplied from different wells or water treatment plants. It is considered that water treatment 
plants and others seek profit maximization and the more they produce and supply the better they 
will be. There is one specific difference in the water supply network, where the water is delivered 
to the final user through the pipelines and if the leader expands the capacities then the followers 
may use it, given the fees to be paid for operating it, which can be seen as an expense the followers 
may face in any other industry setup for utilizing any of other avenues for their business. To make 
the model more detailed and realistic it is also important to consider the environmental impact in 
terms of cost and controlled carbon market, which is done in the developed model below. 

 

Formulation 

The generalized formulation of bi-level problems is given as (Bard, 1998):  
 
     min

x ∈ X
𝐹(𝑥, 𝑦)

	
 

s.t.  
      𝐺(𝑥, 𝑦) ≤ 0 

      min
y ∈ Y

𝑓(𝑥, 𝑦)
	

 

       s.t. 
       𝑔(𝑥, 𝑦) ≤ 0 
       𝑥, 𝑦 ≥ 0 
 
From the structure of bi-level problem we notice that the upper-level player (the leader) solves the 
problem for x and the lower-level player (the follower) solves for y. In a case of game-theoretic 
approach this can be thought of as a Stackelberg game. If draw parallels between the Stackleberg 
game and zero-sum games we can state that in two-person zero-sum game the gain of one player 
is equal to the loss of the other player. In the Stackelberg game this condition does not hold, since 
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whatever is gained by one player is not equal to other player’s loss. This idea should not be 
confused with the gain and loss of potential payoff from the market while players compete with 
each other. Also, in zero sum-game players move simultaneously while in the case of Stackelberg 
game leader makes the first move then gets information from the lower-level player behavior and 
adjusts its move accordingly. In both problems there are also similarities, which are perfect 
information about each other’s strategy and resulting payoffs, and non-cooperativeness. This 
process continues as long as it takes to determine the most favorable solution for a leader (Fricke, 
2003).  

In the lower-level problem there is a Nash-Cournot competition, which means that an 
equilibrium problem needs to be solved. This problem is solved as complementarity problem by 
applying KKT conditions. Complementarity problem is defined as finding a vector (𝑧 ∈ 𝑅8) which 
satisfies the following conditions or to show that the vector 𝑧 does not exists (Cottle, Pang, & 
Stone, 2009): 

 
      𝑧 ≥ 0 
      𝑞 +𝑀𝑧 ≥ 0 
      𝑧< ∙ (𝑞 + 𝑀𝑧) = 0 
 
where vector 𝑞 ∈ 𝑅8 and M is a matrix ∈ 𝑅8. 

To illustrate the structure of KKT conditions the lower-level problem will be considered 
separately. Also, for completeness of KKT conditions, an equality constraint is added to the above 
presented lower-level problem. In bi-level problems the variable associated with upper-level 
problem is considered exogenous for the lower-level problem. This is due to the fact that leader 
makes its move first and the follower takes it as given, which in economic terms is a price taker. 
So, here in the lower-level problem all players are price takers. Hence, by considering x as given 
value (𝑥′) for a follower and converting the problem to maximization as in the developed model 
we get the following lower-level problem with its KKT conditions:  

     
      

max
y ∈ Y

𝑓(𝑥′, 𝑦)
	

 
       s.t. 
       𝑔(𝑥′, 𝑦) ≤ 0 
       ℎ(𝑥′, 𝑦) = 0 
       𝑦 ≥ 0 
 
Corresponding first order KKT conditions for constrained maximization problem would be: 
 

 𝑦:					 CD
CE
− 𝜆 CH

CE
− 𝜇 CJ

CE
≤ 0; 															𝑦 ≥ 0 

					𝑦 ∙ L
𝜕𝑓
𝜕𝑦 − 𝜆

𝜕ℎ
𝜕𝑦 − 𝜇

𝜕𝑔
𝜕𝑦N = 0 

																									𝜇:					𝑔(𝑥O, 𝑦) ≤ 0; 						𝜇 ≥ 0; 							𝜇 ∙ 𝑔(𝑥O, 𝑦) = 0	 
𝜆:					ℎ(𝑥O, 𝑦) = 0																																	 

 
Equation 𝜇 ∙ 𝑔(𝑥O, 𝑦) = 0 is known as generalization of complementary slackness conditions for 
linear programs (Winston, 2009; Gabriel & Leuthold, 2010; Hobbs, 2001).  
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To be able to deal with nonlinearity terms in KKT conditions we need to write all inequality 
constraints in a followers’ problem in the form (Fricke, 2003): 
 

𝑔P(𝑥O, 𝑦) ≥ 0 
 
and in this case the complementary slackness condition would be:  
 

𝜇P ∙ 𝑔P(𝑥O, 𝑦) = 0 
 
which when used with disjunctive programming technique will result to the following constraints: 
 

𝜇P ≤ 𝑀 ∙ 𝑟P 
𝑔(𝑥O, 𝑦) ≤ 𝑀(1 − 𝑟P) 

 
where 𝑟P is a binary variable for replacing complementarity by disjunctive constraint. 

After these steps the followers’ problem gets combined with the leader’s problem and can 
be solved with known standard IP/MIP solvers, such as in GAMS or CPLEX. The schematic 
representation of the chain can be presented as the following Figure 1 below: 

 
 

 
 
Figure1. Simplified Schematic representation of a SCM   

 
 
Notation for the Model 
This section presents the notation and sets used in the model formulation. Note that most of 
capitalized notation refers to the same parameter or variable for the leader’s problem. 
 
Indices: 

 
f indicates the followers 
i  indicates the node of origin 

Leader Supplier

Follower 
Supplier k

Market

Follower 
Supplier 1
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j  indicates the node of destination 
t  indicates discrete time period in 5 year increments for which optimized capacities 

need to be added 
 
Sets: 

 
F set of all followers 
N  set of all nodes   
T set of all time periods included in the model 

 
Parameters: 

 
Aijt, Bijt Intercept, slope, respectively, of the linear demand functions for pipeline 

capacity expansion by leader between nodes 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁 at time 𝑡 ∈ 𝑇 
and 𝑖 ≠ 𝑗 

afijt, bfijt  Intercept, slope, respectively, of the linear demand functions for water 
supplied through pipelines by followers 𝑓 ∈ 𝐹 between nodes 𝑖 ∈ 𝑁 and 𝑗 ∈
𝑁 at time 𝑡 ∈ 𝑇 and 𝑖 ≠ 𝑗 

Uijt, Wijt  Intercept, slope, respectively, of the linear demand functions for water 
supplied through pipelines by leader between nodes 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁 at time 
𝑡 ∈ 𝑇 and 𝑖 ≠ 𝑗 

KQijt Fixed cost term if capacity expansion by pipeline if selected by leader 
between nodes 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁 at time 𝑡 ∈ 𝑇 and 𝑖 ≠ 𝑗 

TechQijt  Expended pipeline operational capacities, between nodes 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁 
at time 𝑡 ∈ 𝑇 and 𝑖 ≠ 𝑗 

techqfijt  Existing pipeline operational capacities for followers 𝑓 ∈ 𝐹, between nodes 
𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁 at time 𝑡 ∈ 𝑇 and 𝑖 ≠ 𝑗 

Hit   is the wellhead or plant capacity at node 𝑖 ∈ 𝑁 over time 𝑡 ∈ 𝑇 
 CONSjt  Consumption at node at node 𝑗 ∈ 𝑁 over time 𝑡 ∈ 𝑇 

DQijt Dependence factor for supplies through leader’s pipeline expanded 
capacities between nodes 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁 at time 𝑡 ∈ 𝑇 and 𝑖 ≠ 𝑗 

dqfijt Dependence factor for supplies through follower’s 𝑓 ∈ 𝐹 existing pipeline 
between nodes 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁 at time 𝑡 ∈ 𝑇 and 𝑖 ≠ 𝑗 

𝜌PZ[ Discounting factor, which may vary between nodes 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁 at time 
𝑡 ∈ 𝑇 and 𝑖 ≠ 𝑗 

 
Variables: 

 
Qijt  The amount of pipeline capacity expansion (and supply) by leader between 

nodes 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁 at time 𝑡 ∈ 𝑇 and 𝑖 ≠ 𝑗 
qfijt  The amount of supplied water through pipeline by followers 𝑓 ∈ 𝐹 between 

nodes 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁 at time 𝑡 ∈ 𝑇 and 𝑖 ≠ 𝑗 
XPijt Binary variable for pipeline fixed costs if expansion is selected between 

nodes 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁 at time 𝑡 ∈ 𝑇 and 𝑖 ≠ 𝑗 
𝛼DPZ[  Shadow price of technical capacity constraint on pipelines for followers’ 

𝑓 ∈ 𝐹 problem between nodes 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁 at time 𝑡 ∈ 𝑇 and 𝑖 ≠ 𝑗 
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Functions: 

 
CPijt(dd)  Costs for pipeline capacity expansion as a function of distance and diameter 

between nodes 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁 at time 𝑡 ∈ 𝑇 and 𝑖 ≠ 𝑗 
CCPijt(dd)  Carbon costs associated with pipeline capacity expansion as a function of 

distance and diameter between nodes 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁 at time 𝑡 ∈ 𝑇 and 𝑖 ≠
𝑗 

CQPijt(dd)  Costs for supplied water by leader through pipeline between nodes 𝑖 ∈ 𝑁 
and 𝑗 ∈ 𝑁 at time 𝑡 ∈ 𝑇 and 𝑖 ≠ 𝑗 

cqpfijt(dd)  Costs for supplied water by followers 𝑓 ∈ 𝐹 through pipeline between 
nodes 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁 at time 𝑡 ∈ 𝑇 and 𝑖 ≠ 𝑗 

ccpfijt(dd)  Carbon costs associated with supplied water by followers 𝑓 ∈ 𝐹 through 
pipeline between nodes 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁 at time 𝑡 ∈ 𝑇 and 𝑖 ≠ 𝑗 
 

Leader in this problem is maximizing its own profits based on followers’ market behavior. Its 
decision variables are capacity expansions as pipelines and accordingly the supply volumes. The 
objective function for leader’s problem is given in (1): 
 

max
]^_`

aaa

⎝

⎜⎜
⎛

⎝

⎜
⎛
𝐴PZ[ − 𝐵PZ[ ga𝑞DPZ[

D

+ h𝑄PZ[ − 𝑄PZ([jk)lm

⎠

⎟
⎞
h𝑄PZ[ − 𝑄PZ([jk)l

[ZP

+ g𝑈PZ[ − 𝑊PZ[ sa𝑞DPZ[
D

+ 𝑄PZ[tm𝑄PZ[ − u𝐶𝑃PZ[(𝑑𝑑)h𝑄PZ[ − 𝑄PZ([jk)ly

− h𝐶𝑄𝑃PZ[(𝑑𝑑)𝑄PZ[l − h𝐶𝐶𝑃PZ[(𝑑𝑑)𝑄PZ[l − h𝐾𝑄PZ[ ∙ 𝑋𝑃PZ[l

⎠

⎟⎟
⎞
𝜌PZ[ 								(1) 

 
Leader’s Problem:  
The leader’s problem has the following constraints, which are formulated based on technological 
and natural conditions of production/supply and dependency preferences of a customer from a 
particular supplier: 
 
0 ≤ h𝑄PZ[ − 𝑄PZ([jk)l ≤ 𝑇𝑒𝑐ℎ𝑄PZ[ ∙ 𝑋𝑃PZ[,				∀𝑖, 𝑗, 𝑡																																																																														(2) 

aasa𝑞DPZ[
D

+ 𝑄PZ[t ≤ 𝐻P[,				∀𝑓, 𝑖, 𝑗, 𝑡																																																																																									(3)
ZP

 



8 
 

𝐶𝑂𝑁𝑆Z[ −aasa𝑞DPZ[
D

+ 𝑄PZ[t = 0,			∀𝑓, 𝑖, 𝑗, 𝑡																																																																										(4)
ZP

 

𝑄PZ[ ≤ 𝐷𝑄PZ[ aasa𝑞DPZ[
D

+ 𝑄PZ[t,			∀𝑓, 𝑖, 𝑗, 𝑡																																																																													(5)
ZP

 

𝑞DPZ[ ≤ 𝑑𝑞DPZ[aasa𝑞DPZ[
D

+ 𝑄PZ[t,			∀𝑓, 𝑖, 𝑗, 𝑡
ZP

																																																																																									(6) 

𝑄PZ[ = 0, ∀𝑖, 𝑗, 𝑡	𝑤ℎ𝑒𝑛	𝑖 = 𝑗	𝑎𝑛𝑑	𝑤ℎ𝑒𝑛	𝑑𝑒𝑓𝑖𝑛𝑒𝑑	𝑏𝑦	𝑢𝑠𝑒𝑟	(𝑖. 𝑒. 𝑝𝑜𝑙𝑖𝑡𝑖𝑐𝑎𝑙	𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒)								(7) 
𝑋𝑃PZ[ ∈ {0,1}, ∀𝑖, 𝑗, 𝑡																																																																																																																											(8) 
𝑄PZ[ ≥ 0,																						∀𝑖, 𝑗, 𝑡																																																																																																																							(9) 
 
In leader’s problem the capacity expansion is subject to technical limitations for a given time 
interval between origin and destination nodes. Such limitation is enforced through constraint (2) 
that is limiting pipeline capacity expansion in a given time interval. In addition to technological 
constraints the capacity of expansion can be limited because of the wellhead capacity, which is 
expressed through constraint (3). In this constraint players from lower level problem are also 
included since the capacity of a particular underground basin or source can be used by few players 
and hence the total capacity of expansions and accordingly flow capacities cannot exceed the 
maximum capacity possible to extract from a particular location. Constraint (4) is the market 
clearing condition which in other terms ensures that the consumption is met and there is no excess 
amount of water pumped and left unused. Consumers are free in their preferences and may prefer 
to have more capacities from one supplier and less from another supplier. Having information 
about consumer’s preferences leader can make more reasonable decision for its investments in 
getting market share. Constraints (6) are designed for accommodating consumer’s preferences into 
decision making process. In other commodity cases due to constraints (6) the decision model is 
also useful for consumers, who may decide for preferable conditions and strategies for them or 
their company and consequently develop contracts based on suggestions of the model. Constraints 
(7) enforce zero capacities for nodes itself, since there is no need to have capacity starting and 
ending at the same location. Constraints (8) are requirements for certain variables integrality and 
constraint (9) is non-negativity requirements.  
 
Followers’ Problem:  
Followers want to maximize their profits by maximizing their production at the same time taking 
leader’s production quantities as fixed. Followers are included in this problem with fixed 
capacities, which means they do not solve the problem for capacity expansion. The reasoning 
behind this approach is that leader would use all its options to add the gap between demand and 
supply if it turns to be a profitable investment to make, otherwise the dual variables included in 
followers’ problem will provide information about the needs for followers’ capacity expansions. 
The objective function for followers’ problem is given in (i): 
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max
��^_`

aaa

⎝

⎜
⎛
g𝑎DPZ[ − 𝑏DPZ[ sa𝑞DPZ[

D

+ 𝑄PZ[tm𝑞DPZ[
[ZP

− sauh𝑐𝑞𝑝DPZ[(𝑑𝑑)𝑞DPZ[l + h𝑐𝑐𝑝DPZ[(𝑑𝑑)𝑞DPZ[ly
D

t

⎠

⎟
⎞
𝜌PZ[ 																																	(𝑖) 

 
Followers have only technical limitations on their production capacities. Those are presented 
below: 
 
0 ≤ 𝑞DPZ[ ≤ 𝑇𝑒𝑐ℎ𝑞DPZ[ ,				∀𝑓, 𝑖, 𝑗, 𝑡																						(𝛼DPZ[)																																																																								(𝑖𝑖) 
 
Constraint (ii) enforce capacity limitations, which are related to the upper levels of existing 
capacities in terms of pipelines.  
 
KKT conditions for followers problem: 
 
To formulate KKT conditions it is necessary to use derivation. To ease the situation we used a 
prime on the top of those terms that are associated with the term used for derivation. For instance 
𝑞D��[́  is one of those followers in the lower level	∑ 𝑞DPZ[D ,  
 

0 ≤ g−𝑎D��[́ + 2𝑏D��[� ∙ 𝑞D��[́ + 𝑏D��[� sa𝑞DPZ[
D

− 𝑞D��[́ t + 𝑏D��[ ∙� 𝑄PZ[ + 𝑐𝑞𝑙𝑛D��[� (𝑑𝑑)

+ 𝑐𝑐𝑝D��[́ (𝑑𝑑)m𝜌PZ[ + 𝛼D��[́ ⊥ 𝑞D��[́ ≥ 0,			∀𝑓, 𝑖, 𝑗, 𝑡																																													(𝐼)	 

 
0 ≤ −𝑞D��[́ + 𝑇𝑒𝑐ℎ𝑞D��[� ⊥ 𝛼D��[́ ≥ 0												∀𝑓, 𝑖, 𝑗, 𝑡																																																																								(𝐼𝐼) 
 
Dual variables for non-negativity constraints are omitted. For further discussion of KKT conditions 
and its modifications see (Cottle, Pang, & Stone, 2009; Winston, 2009). Following the steps 
discussed above the KKT conditions need to be formulated as disjunctive program (not shown 
here).  
 
Disjunctive form of followers’ problem: 
 
Once disjunctive program is formulated it can be combined with upper level problem and solved 
for equilibrium point indicating the supply volumes by both the upper and lower level players that 
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slows to get the best outcome in the market and plan strategically. The combined problem and the 
case study are not presented in this paper due to space limitations.  
 
Conclusions: 
 
Application of bi-level problems were proven to provide non-intuitive findings that benefit both 
the upper-level and lower-level players in any industry. The preliminary results of this study 
indicate such instances in supply chain management area as well. In previous studies authors found 
the importance of Stackelberg problem setup for natural gas supply network expansion between 
Russia and China (Avetisyan, 2013). It is expected that finding of this case study will provide 
similar valuable information and can be expanded and adopted by any other sector or industry’s 
supply chain management system. The formulation in this paper is simplified to consider just few 
constraints for illustration perspective, but the actual larger scale model considers more than one 
commodity type that can be supplied by the suppliers, which gives the model more flexibility for 
managing the entire set of supplies.  
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